If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144+x^2=361
We move all terms to the left:
144+x^2-(361)=0
We add all the numbers together, and all the variables
x^2-217=0
a = 1; b = 0; c = -217;
Δ = b2-4ac
Δ = 02-4·1·(-217)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{217}}{2*1}=\frac{0-2\sqrt{217}}{2} =-\frac{2\sqrt{217}}{2} =-\sqrt{217} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{217}}{2*1}=\frac{0+2\sqrt{217}}{2} =\frac{2\sqrt{217}}{2} =\sqrt{217} $
| 8+9f=-1+8f | | 10+1-7z=-4z-10 | | -8r-10=10-6r | | m2+12m+32=0 | | -6t-5.18=-9.23-6.5t | | p=120-45 | | (96-3y)+3y=96 | | x/7=42/14 | | 10-7q=-8-2-5q | | w5=6 | | 10+6g=7g | | Y=1.8x+210 | | 2l=10 | | -24-3x=6 | | -7-6j=-6-5j | | T-14=16+4t | | -8+5s=7+3s+5 | | 13m=546 | | 16q=320 | | -10-8t=-3t | | 2q+q-q=14 | | 24-f/11=5 | | x=450-3 | | 9=x/2+31 | | 459=17u | | f=450-3 | | -6m-1=-9-8m | | 4n^2=2n-10 | | r=0.83. | | 10x+45+90=180 | | -4+n/5=11 | | 2x-1=-12x |